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1. Introduction

The analysis of queueing systems with mixed types of interruptions is

important in many computer systems modeling applications such as systems
operating in different modes, systems subject to breakdowns and repairs and
priority queusing systems.
The M/G/1 queue with a single type of Poisson interruptions was dealt with
extensively by Cever (4] for a veriety of service-interruption interactions. The
analysis was based on the definition of the completion time. Hs derived the
Laplace Steiltjes transtorm(LST) of the compistion time and used the method of
imbedded Markov chain and the renewal theory to obtain the generating func-
tion of the distribution of the number of customers in the system. In this peper
we extend the results of Caver to allow the simuitaneous presence of different
types of interruptions. The analysis is also based on the completion time. Gen-
sra] Markovian reward models for the analysis of the completion time has been
studied recently [10,11] for various types of service-interruption interaction.
Yot dus to the assumption of exponential holding times the model presented
here is not included as a special cese.

We introduce the definition of the effective service time associated with o
customer’s service. This is meaningful and useful for the demonstation of an
siternetive probebilistic arguments to the derivation of the first and the second
moments of the complstion time. The steady-state average number of custo-
mers in the system Is abtained and the reistion to the Poliscsei-Khintchine for-
mule is noted. B |

Seetion 2 containe a deseription of the system and the dierent types of the
servioo-interruption interestion and intreduces basie Gufitions. In sestien §
we derive the probebility distribution fanstion of the compistion time ang give
prabedilistic arguments to ibe dertvation of s frst and seomnd wminents. The
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steady-state aversge number of customers in the system is obtained in section

4. In section 3, applicaton to the modeling of checkpointing and recovery in a
transactional database system is considered.

Consider the M/G/1 qusue subject to different sources of Poisson interrup-
tions of diffsrent types. Customers receive service according to the FCFS discip-
line. It is necessary to distinguish different types of interruptions. Independent
interruptions may arrive when the system is idle or when the system is servicing
a customer. Active interruptions may arrive only when the system is servicing a
customer. No intsrruptions may arrive when the system is servicing an interr-
uption.

The following is a clessification of the different types of service-interruption
intersctions considered in this paper (see figure 1).

1) Presmptive interruption (prw):
Customer’s servioe is preempted immediatsly on arrival of an interruption.
After servicing the interruption there ars two possibilities: namely:
a) presmptive-resums (pre): the customer's service is resumed from the
point at which it was preempted.

b) preemptive-repest (prt): the customer’s service is repested from its
beginning. In presmptive-repeat-identical(pri) interruption, the same
idemtival ocustemer’s service is repested. In presmptive-repsat-
differemt(pre) interruption, & serresponding custienee’s service tUme of
the same dlstribution is repested. -

e -
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preemptive (prw ) postponable (pep)
/ \
preemptive —vepeat (prt)  preemptive —resumas (prs)
- \

preemplive ~  presmpitve ~
repost - repect -
tdentical(pri) dif fevent(prd)

Agure 1. Classifioetion of different types
of servioe-interruption interaction

I) Postponable interruptien (pep):
Customer's service estinues upen the arrival of an interruption. The interr-
uptions accurnuleted during the customer’s service are serviced immedi-
ately after servieing the custemer. |
Any of the interruptions olassified ebove may be active(ect) or
independsnt(ing). We define the subssta of interruption sources:
aprd, qpri, aprt, qpre, qpev, Gpep and act, oerresponding to the different
types of active intsrruption, and the subsets: {prd, fpvd, Prt, ipre, paw, pep
and ind, correspending te the different types of independent interruption. it fol-
lows for the subsets of astive interruption sources
wrt sapri Yeprd,
Py = gprt ) v,
st = qpew ) P ,
and for the subssts of inSepondent interruption seuress
ot o Yo,




pmy = tprt | iprs
ind = pmu  ipsp .
Define also the subsets: pri, prd, prt, prs, pmv and pep such that
pri zapri  fpri,
prd = aprd | fprd ,
prt zaprt ) fprt .
prs =aprs ) prs .
pmy = apmy | tPpmv ,
pep = apep | ipep .
The total set of interruption sources, 7, that may be present in the system
is given by
T=pmyu pep =act | ind .
In subsequent discussion the index t(¢ €T) indicates the source of interruption
(note that there may be more than one source of the same type).
The following notations describe the system
A is the customer’s arrival rate.

8 is the customer's service time; & random variable with a probability distri-

bution function G(2)=P(S%=) and LST s).

v is the arrival rate of interruptions from source ¢.
Iy is the time duration of source ¢ interruption; a random variable with proba-
bility distribution function G (2)sP(/;%3) and LST [;(s).

We define the offective service tims, 5, to be the random interval of time
spent by the system in servicing a customer, including the repetitions due to
prt interruptions during the customer’s servics and exciuding the tire durstion
of interruptions. Thas
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if no prt htorruptiom are prssent
S, = L'[ ﬁ S(i.d) + sw} tsm .5, @1)
if prt iucrnpuom are present

Npa0 is the total random number of prd interruptions (possibly from differsnt
sources) that arrived during the customer’s service.

Ny(d)x0, 1%d£Np, is the total random number of pri interruptions (possibly
from different sources) that arrived between the (d~1)~tA and the d~tA prd
interruptions (d —1=0 corresponds to the beginning of the customer’s service).
S(i.d), 18isN/(d), 18d€Np, is the random interval of time between the
(8-1)~tA and the {~¢tA prt interruptions that arrived between the (d~1)~th and
the d ~tA prd interruptions (i ~1=0 correspands to the beginning of service after
the (d-1)~¢tA prd interruption).

S(d), 1d$Np, is the random interval of time Detween the d ~th prd interrup-
tion and the preceding pri interruption. Note that S(d) and S(i.d), 1=i<N,(d),
are dependent random variables.

Ny'a0 is the total rendom number of pri interruptions that arrived between the
last prd interruption and service completion.

S’ is the random interval of time between the last pri interruption and service
compistion: it is the customer’s service time which is restarted following the
last prd interruption.

5'(i)8S’, 19iSN", is the random interval of time between the (i~1)=¢A and the
t=th pri interruptions that errived after the last prd interruption. Note that S*
and &'(1), 18i<N;", are dependent rendom veriables.

R is impertant to nste that when different types of interruptions are
present, S, is merely dstermined by the pvt (pvd and god) interruptions. ¥
there are oo prt interruplions, then S, is identical (o the custemer’s service
time 5. Lot Q(s)nP(S,as) bo the prebebility dotribution function of the




effective service time and denote by S, (s) its LST.

The completion time, C (as defined by Gaver), is the random intetval of
time between the instant at which the customer's service begins and the instant
at which the service of the next customer may begin (does begin provided that a

customer is present). It follows that

N
C=S,+% zfl.(k) (22)
€T Am)

N, is the random number of source t interruptions that arrived during the
customer's service, and /; (k) is the random time duration of the k ~tA interrup-
tion of source ¢. S, is as given by equation (2.1). Let G,(z)=P(C=%z) be the pro-
bability distribution function of the compietion time and denote by C'(s) its
LST. It is important to notice that the completion times of successive custo-
mers are independent and identically distributed random variables.

The following notations are presented for the completion time and will be
used for all random variables under consideration.
The { ~tA moment E(C*) is given by the following relation

E(CY) = (-1 [:‘%Q-LO. t=12... (2.3)

The expected residual time, R(C), is given by the following relation

mo = FEL (24)

L3
In the following section we consider the analysis of the completion time.




e e —b——— 3000 A s v

3. The Completion Time

This section is devoted to the analysis of the completion time associated
with a customer's service. Clearly the analysis is independent of queueing
aspects. We will derive the probability distribution of the completion time and
give an alternative probabilistic arguments to obtain its first and second

moments.

Consider a single server subject to different types of Poisson interruptions.
Interruptions may arrive only during the customer’s service. The interruptions
from source teT have durations that are independent and identically distri-
buted.

It is important to remark that the psp and the prs types of interruption

have exactly the same effect on the completion time (but not the same queueing
sffect). Thersfors we can group thess two types of interruption into one type,
say prs, in the analysis of the completion time. Without loss of generality we will
consider the simultaneous presence of a single source from each type of interr-
uption; namely, prs, pri and prd. The results are similar in the case where one
or more sources from each type are present. Thus in the analysis of this section
we will consider the mixture of the following three sources of interruption:
i) prs source, with interruption rete v, and duration /, with LST given by /;(s).
i) prt source, with interruption rate u, and duration /; with LST given by [i(s).
{if) prd source, with interruption rate vg¢ and duration /4 with LST given by
Iy(s).

The effective service time end the compietion time associsted with a

customer's service were defined in section 2 The corresponding LST: are
defined as follows




f S, (siS=2) dG(z). if no prd interruptions are present

(1)
Se@) = (n""'). otherwise
whers
Si(slS=z) = E(e S =z) . (3.2)
Similarly,

EC"(I‘SS:) dG(z). i no prd tnterruptions are present (3.3)
Cla) =

(e *€). otherwise
where

ClsiSnz) = £(e *CSaz) . (3.4)

We are particularly interested in the first and the second moments of the
above random variables. The expected residual time is given by the following B
relations

T R(S,'S=x) dG(z), ifno prd interruptions are present

R(S,) = "!3.') (3.5) :
where ;
i R(S,/S=z) = %_‘7:2;. _ @8 |
Similerly, ‘
!
f R(C'S=3) dG(z), it no prd interruptions are present
* R(C) = ‘m a7
Y {(4 otherwise

where

mcsee) = TR o
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The following remark will be used in subsequent analysis. Let H be the hold-
ing time in the operating state (servicing the customer) between any two interr-
uptions, and denote by Gy(z)sP(Hsz) its probability distribution function.
From the Poisson property of all interruptions it foilows that

da(z) =v e dz (3.9)

where v = v, + y¢ + vy is the total interruption rate.

In the next section we proceed to derive the LST of the completion time.

3.1. The Lapiace Seiltjes Transform (LST)

Consider a customer that starts being serviced with initial service time
So =z (note that the customer's service time changes after any prd interrup-
tion). Upon the arrival of prs interruption the customer's service is preempted
for the duration of the interruption. The same customer’s service is resumed
after the interruption. The initial customer’s service may complete after a
number of prs interruptions and before the arrival of any prt interruption. Oth-
erwige it is presmpted and repeated after the prt interrption. After a prt interr-
uption the same initial customer’s service is restarted. After a pr interruption

a different customer’s service (#z) is repested. The new customer’s service may
be completed before any prt interruption, otherwise it is repeated, and so on.

Let Cy(z) be the total time spent in servicing the customer and the prs
interruptions until 2 units of service time ars completed and before the arrival
of any prt interruption. Note that C)(z) has incompiste distribution, since
Ci(z) = =, if any prt interruption arrives before completing = units of service
time.

Lat Cy¢(3) be the total time spent in servicing the customer and the pre interr-
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uptions until the arrival of any prt interruption and before the completion of 2
units of service tims. Note that Cy(z) bas incomplete distribution, since
Ce(2) = =, if 2 units of service tims are comieted before the arrival of any prt
interfuption. Furthermore it is clear that

P(Ci(z) = @) + P(Cy(s) = m) = 1,

since the two events are exhaustive and mutually exciusive.

Define the following LST's

Ei(s,x) = E(e ™), (3.10)
and

Cols.z) = E(e ™% (3.11)

The following two lemnmas dstermine the shove LSTs which are usstul for
determining C'(s) defined in equation (3.3) as will be shown in theorem 3.1.

Lemma 3.1 : The LST C(s.2) as defined in equation (3.10) is given by

Ci(s.z) = e v (3.12)
where v and v, are the total and the pre interruption rates, respectively.
Proof : Conditioning on H, the holding time until the first interruption. we have

(s .2H=A) = E(e " "N nn)

- - if A2
%—a" L) Ci(sz~h). Uh<a

Unconditioning with respect to &, we get

Cisa)ma0ri ,ZV. e @R [i(e) Ci{ssh)dr

Define the double transform
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Ci(s.u) -_Z'c“' Ci(s.2) dz

After changing the order of integration and rearranging, it follows that

Q(su) =

s+v-y/,(s)*u
Inverting with respect to u yields equation (3.12). Q.£.0.
Lemma 3.2: The LST Cy(s.2) as defined in equation (3.11) is given by

é;(l,z) = ;-:;%::—-'T:('—)-[l —l-"""!:"”.l. (3.13)

where v and v, are the total and the prs interruption rates, respectively.

Proof : Conditioning on H, the holding time untli the first interruption, we have

Cofs.2lH =) = £(a ™%\ 2p)

- if prt presmpbion
"l fi(s) Ces.z-n). it pra preemption

Unconditioning with respect to A, we get

Ca.s) = z‘ W) etV o Z'v. e-6wR Py(e) Cils.2-h) dh
Define the double transform

Cilew) -z.-- Ox(s.2) da
After changing the order of integration and rearranging, it follows that

v
Cilon) = ,—;;T;!k(,—)('}' T A0

Inverting with respect to u ylelds equation (3.13). Q.£.D.
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Now we can proceed to determine C'(s), the LST of the completion time, in

the following main theorem.
Theorem 3.1 : The LST of the completion time associated with a customer’s ser-

vice is given by
z S LI N AT ) 4G(z)
L 4
_ _wh®) TN AT
ey t .w%'(.) {(1~-¢ ]
velg(8) (| _ g-tesvvlitle) ' (3.14)
T sy, /y(s) d6(z)

1 -[ f
_ __Wwis) _ garvvfile)e
! cw-o.‘ «(®) (1-e ]

whers v and v, are the total and the prs interruption rates. respectively.

Proof : Lat C(z) be the total time to completion of a customer’s service given
that its initial service time Sy=z. The corresponding LST is given by

Cls.z) = E(s~cW)

F(L:'{."SﬂT if completion before prt interruption

C|8 <) °

It follows that

Clsx)s Ci(s.3) + %ﬁ_if.(u) Cls.s) + :,‘-r_-i;fflt-'-(l-ﬂ Cla)

Substituting for C'i(s.5) and Cy(s.3) from lemmas 3.1 and 3.2 and rearranging.
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rearranging yields equation (3.14).Q.£.D.

The following corollary determines S, (s), the LST of the effactive service
time.
Owollary 3.1 : The LST of the effective service time associsted with a
customer’s service is given by
- ~wmenge
{ = 2ot
gty e
. 1_. ,,‘,,‘,,] (3.18)
1—[ pyompon pC T dG(=)

s) =

where ¥ and V¢ are the pri and the prd interruption rates, respectively.

Proof : Lat S,(z) be the effective service time associated.with a customer's ser-
vice given that its initial service time Sg=z. The corresponding LST is denoted
by Si(s.2). From earlier definitions in section 2, it should be clesr that the
offective service time follows from the completion time by setting the duration
of all interruptions to zero. Thus substituting for [o(s) = [i(s) = fg(s) = 1 in
equation (3.16) yisids the following

So(s.2) = £ ™%")

oo R
o (8Fygtu)e .w“ﬂ:? S;(n)’l . !. @17

where we made use of V-, Byy Py,
Equstion (3.18) follow from equation (2.17) or by simller substitution in equstion
(3.14). @8.D.

R is interesting to note that the effsctive service time depends caly on the
rates of the pri and pvd interruptions and on the distridutien of the custemer’s
serviee time.
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3% The Nirst Mement and the Expected Residuel Time

Clearly the i-th moment of the completion time can be determined from the
LST Cls) by equation (2.3), though this is a lengthy and error-prens task. A
more elegant technique follows the same steps as in the derivation of C'{s).

We give an alternative derivation of the first moment and the expected resi-
dual time. This derivation is besed on probabilistic arguments; it is presented as
an intuitive confirmation of results which are proved rigorously. The derived
expressions relate the moments of the completion time to the moments of the
sffective servioe time , the retes and the moments of the interruptions. This is
advantageuos since it is ssier to evaluate the moments of the effective service
tims.

Nirst we introduce some quantities that will be used in the following discus-
sions. Let 4 be the expected fraction of completion time spent by the system in
actually servicing the customer. From the Polsson property of interruptions it
follows thet the sxpected fraction of compietion time spent by the system In
servicing source ¢ interruptions, 4. is given by 4w £{/;) From the normalizing
oondition we get

An(ie '};,,v. () (3.18)
and : '

Asw B(L)(1e ‘;"l B(R)) . (3.19)

Ve stote the main resulls ia the following theerem.
Thserom 3.2 : In the pressnss of all types of interruptions: namely, pre, pvt, snd
pré. the Bret mement end the expested residusl time sseoeiated with a
custemer's servies are given by the following reistiens
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5(c) = HRL (a0)
- |
R(C) = R(S,) + 4y (RG) + 204
+ A (R(ly) + B(CY)

mm&w*—[ " "" dG(x)] , (3.21)

where 4. A, A, A are given by equations (3.18) and (3.19),

£(S,\S=x) = -[‘_‘r.z.ﬁﬂ.l‘
e
= ' —* ’
(14w B&) At

z_ g i .
"1”“

E(S,) = .
1- [ dG{s)
gty 8
and
- ~iw w_
(e e ’
R(S.) = (1 + vg () ...,..,,,
[ dG(x)
Yt o

Proof : £(3,Sy=3) and E(S{\Syaz) tollow by differentisting 5, (s.2) from equa-
tion (3.17) with respect to s and using equation (3.3). Unvonditioning with
respect to Jo and resrranging yields F(S,) and S(SD). Smilerly, equstion
(a.xs)aauuu“t(ds.u)ut(&.u).wm
respect to Sy end reerrenging ylelds X(C) and B(CY). M%) and B(C) are
obisined frem equetions (3.8) and (3.7), respestively. Q2.0

——— e




A 3

Wy

16

In the following remark we present a probabilistic argument to the derive-
tion of theorem 3.2.

Remark : (probabilistic argument)

From the Poisson property of interruptions, it foilows that the total
expected duration of type ¢t interruptions during the customer's service is given
by v E(S,)E(/)). teT. This property holds inspite of the dependency of the
sffective service time on the stream of prt interruptions.

Consider the completion time given that the initial customer’'s service
Sg=z. The expected completion time is the addition of the sxpected effective

service time and the expected time spent in all interruptions during the
customer’s service. Hence, we have

E(CiSenz) = E(S,\So=z) (1 + v, 5(L,) + wE(K) + veE(ly)) (3.22)
Unconditioning with respect to S yields equation (3.20).

A random observer will find the server actually servicing the customer with
probability 4, and will ind an interruption of type ¢ with probability 4, t€T.
Furthermorse if the expected residual time of S, is R(S,) then its contribution
to the expected residual time of C ls expanded by a factor A~} due to Interrup-
tions that arrive during the residusl effective service time. Therefors, the
expected residual time of C given that Se=3, may be written as follows

R(CSeez)= A ti‘%’ﬁ'—’a
v alr » 2SS,
+ A [R(Jg) + £(C))
+ A [R(L) + B(CSema)) (s.23)

Substituting for the expectad residual time from the relation in (2.4) and using
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equation (3.22), we get
E(CSy=3z) = ﬁi‘f"—')

+zv.E(l.)[R(l.)3(3o|So'8)"‘ ‘A’ )i

» 2v4 E(le) B(S/Sem2) (R (L) + E(C)]
v 29 B (RO Bsispem » EESEy (3

Unconditioning with respect to So and deviding by £(C) from equation (3.20)
yields squation (3.21).

The following two corollaries specialize to the cases where either prd or pri
interruptions are preseat, but not both simuitaneously.
mal:umﬂinumpﬁommmummﬂrummtmm
expected residual time of C are given by

seye S5 (a.29)

and
R(S,)

RC) = R(S,) + A [RU) + =521 + A [RUS) + E(O)] . (3.20)

where .
‘ -

E(S,) ‘;ﬁ .

and

R(%) = 58 - gy S

Preaf : Tollows directly from theorem 3.2 by letting %50 and evelusting £(S,)
and £(8,) aseordingly. Q5.0.

Qereliary 29 : I no prd interruptions are present thea the firet moment and the
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sxpected residual time of C are given by

E(C)= 5.(.;.'.).., (3.27)
R(S,)
R(C) = R(S,) + A [R(L) + =3 + A [R() + E(C)] (3.28)
where
E(S,) = "“," =) Iy

and

RS = 55 - gyt ) St —(TLwly

Proaf : Follows from theorem 3.2 by coditioning on the customer’s service time
S(=Sq)=z. We get

E(C'S=mz) = !ﬁgﬂ .

and

R(CT=x) = R(S\Smn) + A (R() + B2y o 4 (004 ¢ B(Cn0)]

Unconditioning with respect to the customer’s service time 5 and evelusting

£(S,) and R(S,). using equations (3.17) and (3.8), ylelds equations (3.27) and
(3.28). Q£D.

So fer we bave been abis to derive the LST of the effective servies time and
the compistion time asecvisted with & customer’s servics. We also obtalned use-
Al relstions for the frst moment and the expected residual time.

R should be noted thet aithough we have censldared sne source of interrup-
tiens of cash type, the sune resuilts heid in the sase where there are more thea
ene sourse of interruptions of eash type. Ter exnssapls, the terms v, [o(s) are
repiased b7 B li6a). g@te.4.4]. in oquation (3.34) for ™).

g —




19

IR remains to note that the completion times associated with successive
customers are independent and identically distributed random variables. This is
an important remark for the analysis of the steady-state average number of cus-
tomers in the system which is considered in the next section.

4. The steady-state average number of customers

" In [4] Gaver derived the steady-state distribution of the number of custo-
mers in the system in the case where only a single type of interruption sources
are present. Similar derivation hoids in the case with mixed types of interrup-
tion sources. In this section we show that if we are only interested in the
steady-state average number of customers then it can be derived by rather sim-
ple probabilistic arguments [7.8,14).

Unlike the analysis of the completion tims, it is important to distinguish
active and independent interruptions. We consider the mixture of all types of
interruptions, active and independent, with one or more sources of sach type.
We show that when all interruptions are of the active-presmptive type, the
steady-state aversge number of customers is determined by the Pollacssic
Khintchine formula.

I is convenient et this point to introduos the conoept of o virtual custemer
assceieled with each real customer; s service time is identioal to the cemple-
ton time thet we studied in section 3 This implies thet & virtusl custemer
lowves the eystocn cnly when 1ts "ewn” postpensile inburvuptiens, if eny, are sor-
mm-u“mumnmmum
sl tarraptions
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Denote by P; the expected fraction of time the system is idle (i.e. neither 5
customers nor interruptions are in the system). From the Poisson property of
interruptions, it follows that the expected fraction of time the system is servic-
ing independent interruptions from source ¢ that start busy periods is given by
Py=Pry K(1;). t ¢ind. This is also the expected number of independent interr-
uptions from source ¢, that start busy periods, in service. £; can be determined 1
from the normalizing relation B

AE(C) + P, P =1
(©) 1*.§.o

R follows that

Py=(1=-AE(C)(1+ .;‘_v. E(L)™", | (41)
nd

JERE

Rewl)(1-NE(C)(1+ .2‘* E()) «®

From equetion (4.1) it is cbviucs that the system is stable L AE(C) < 1.

The following theorem gives the general resuit. U
Thesrem 4.1 : The stesdy-stete aversge number of customers in the M/G/1 !
queus with mixed types of interruptions is given by ‘

NaA(1s B w BN T wE) R() y
+ (1~ AB(C))"* A* E(C) R(C) + AB(C)
-AR(S,) g-. E) («3)

with £(C) end R(C) as given by equations (3.20) and (3.21), respectively.

Freaf : Lot V" be the meen respense time of a virtual sustomer and denote by N*
the sisady-state avernge number of virtual eustomers sesnh Wy an ecvivel; it s
idontical to the time overnge sinee arrvivals are Pelsoen [16] The expested
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number of virtual customers in service seen by an arrival is A £(C) and hence
the expectad number of waiting virtual customers is (V' = A £(C)).

The mean response tims W' of a virtual customer is made up of the follow-
ing terms

WaW +Wge Wyt W',

¥, is the expected remaining service of independent interruptions, that start
busy periods, found in servics

= ‘E‘Po R(h)

with P, from equation (4.2).
", umq'mammdmnimmmm
¥y = AR(C) R(C)
with £(C) and R(C) trom egquations (3.20) and (3.21).
¥y s the expected time spent in servicing the waiting virtual customers found
in the system

V= (N - AE(C)) B(C) .
W, is the expected service time of the arriving virtual customer

7= £(C) .
Substituting for N’ frem Littie's fermula (N"sAF") yislds en explieit sxpression
e

ya(i O'Lwl(ld)"‘,&wﬂﬂ 2k)
* (- MBIEI AS(EY HEY ¢ BUE) .

umwwrdauwtm:'m
mwmmmm'ﬂ .

T
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The steady-state average number of real customers N follows from Little's
fomula (N=A¥). Q£.D.

The following corollary specializes the result to the case where all interrup-
tions are of the active-preemptive type.
Qorollary 4.1 : In the special case whre all interruptions are of the active-
preemptive typs, the steady-state average number of customers is given by the
Pollaczek-khintchine formula

N =AE(C) + (1 -AE(C))™! A3 E(C) R(C) (4.4)

with £(C) and R(C) as determined by equations (3.20) and (3.21), respectively.

Proaf : Follows directly from theorem 4.1. @ £.D.

This result could bs anticipated since when all interruptions are active-
preemptive, the system can be viswed ss an M/G/1 queue with the real
customer’s service time replaced by the virtual customer's service time (or
equivalently, the completion tims).

S. Applicstien te the Nodeling of Checkpuinting and Resovery

In this section we consider the appiication of the developed theory to the
modeling of checkpointing and recovery in s transactional system.

=
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6.1. Introduction

Periodical checkpointing is a common technique for maintaining the
integrity of information in database systems subject to failures. During a check-
point a copy of the system files is saved in a secondary storage device. When a
failure occurs, a recovery action is initiated. It starts with reloading a copy of
the system (les that were saved at the last checkpoint into primary memory.
This is followed by reprocessing all those transactions that bave been processed
since the last checkpoint. The recovery action brings the system to its correct
status as just before the failure. The system is unavailable for processing new
transactions during checkpointing and recovery operations. Too frequent
chockpdnhcostmuchﬁmclnmldn.unmmarycoplq.mdtoodhhnt
checkpoints cost much time in reprocessing after failures. Therefore it is of
much interest to determine the checkpointing frequency that optimizes certain
performance measure such as the system availability (the fraction of time the
system is available for processing new transactions), or the mean response time
of a transaction.

Although many authors have studied models to determine the system avai-
lability, only a few of them considered the queusing aspects in order to computs
the mean response time [1.2,3,5,6,12,13]).° In most of these models the mean
recovery period is assumed to be proportional to the mean available time
between checkpoints. Gelenbe and Derochette [5] considered an M/M/1 system
with two sources of independent Poisson interruptions; namely. checkpointing
and failure-recovery (indeed, this is a special case of Gaver's model). Nicola and
Kytstra [12] extended the modei to include state-dependent perameters and
finite waiting rooen. In [13] they oconsidered & model in which checkpoints are
mm.wmammw

* we rounint owr mwh“ﬂuwm

s
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strategy). In [8] Gelenbe relaxed the exponential assumption and considered a
general distribution of available time between checkpoints. Baccelli [1] contin-
ued the work of CGelenbe and derived numerical algorithm for the computation of
the mean response time. Duda [3] further generalized the model to the GI/G/1
system. His analysis is based on a diffusion spproximation approach, and it
implies a preemptive-resume type of interruptions. In [2] Bacceili and Znati con-
sidered an M/G/1 systemn with two types of ir.dependent Poisson interruptions;
namely, preemptive-resume (for checkpointing) and preemptive- repeat-
different (for recovery).

In this section we consider an M/G/1 system. Checkpoints may occur when
the system is idle or when it is processing. If the system is processing then the
checkpoint operation is postponed until the end of the transaction being pro-
cessed. Therefore checkpoints are modelled as independent-postponable (ipsp)
Poisson interruptions. Checkpoint durations are independent and of identical
general distribution. Failures may occur only when the system is processing. A
recovery operation preempts the transaction being procesud. When recovery is
completed the preempted transaction is reprocessed. Therefore recoveries are
modelled as active-preemptive-repeat-identical (apri) Poisson interruptions.

We propose a more accurate recovery model than those considered in pre-
vious queueing models. It is assumed that a random number of transactions
should be reprocessed in a recovery operation. The distribution of this number
is identical to that of the random number of processed transactions between
failure occurrence and the last checkpoint. This yieids independent recovery
durations of identical distribution. The mean and variance of this distribution
can be expressed as functions of the checkpointing frequency, as vill be shown.
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5.2 Performanoce Measures

First we define the parameters and the random variables associated with
the model described in section 5.1. Consider the M/G/1 system in which tran-
sactions arrive at rate A. They are processed according to the FCFS discipline.
The processing time of a transaction, S, is a random variable of general distri-
bution: its LST is S'(s). Checkpoints are ipsp Poisson interruptions. They are
perfomed at rate a. Checkpoint duration, 5, is a random variable of general dis-
tribution. Failures are apri Poisson interruptions. They occur at rate 7.
Recovery duration, @, is a random variable of general distribution.

We procsed to compute the first moment and the expectesd residual time of
the effective service time, S,, and the completion time, C, as defined in section
2. Since there are no prd interruptions, we can use the results of corollary 3.3.
R follows that

5(s) = EA=1. (5.1)
(ST-29) -S(=) _dS ()
R(S,) = L= dy . (82)
. (S(-n-1)

Lat A, Ag. Ag. be tbe expectsd fraction of completion time spent by the sys-
tem in processing the transaction, in checkpoints and in recoveries, respec-
tively. Then from equations (3.18) and (3.19) we have

As(1+al(B)+yEWQ)". (8.3

Ag=ak(B)A . (8.4)
and

Ag=yE(@) A . ’ . (a.8)

Zqustions (3.27) end (3.20) give fer 5(C) and R(C) the folloving
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5(C) = ﬂ%)—. (5.6)
and
R(S,) (S,)
R(C) = R(S,) + M[R(B)*"——]“AO[R(Q)"' "'—-] (5.7)

Let F; be the probability that the system is idle; it is determined from
equation (4.1). The system availability, A° is given by

A"XE(S.)*P[

= 12AB(S,) YE(Q)
(1 + aE(5)) (5.9)
The mean response time of a transaction, ¥, is determined from theorem
4.1 and Little's formula
af(B) R(B AE(C)R
ve sEELRA MO . £C) - a£@) B(s). (89)

The first term is the contribution of checkpoints that start busy periods and the
last term is due to the postponement of checkpoints. The middle term
correspond to the Pollaczek-Khintchine formula (see equation (4.4)).

For the optimization of performance measurss we need to establish a modsl
for the dapendencs of the recovery duration, Q. on the checkpointing rate, a. It
can be shown [8), for exponential available time interval betwesn checkpoints
and Poisson failure ocourrences, that the available time interval, F, between = ]
failure occurrence and the last checkpaint is exponentially distributed with a o
mean a~'. We assums that the complstion process of transsctions (in the aval- -
able time) is Poisson with rate 2 Lt N7 be the rendom oumber of sempleted

mmmnmmunummmﬂ
m-u&hwmm“l'
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var(NF) = (P-) var(F) + :rt(i')
A
= -;;.—(1 + ﬁ—.') (s.11)

where var(.) denotes the variance of a random variabls.

Further, we assume that a random number corresponding to NF and of
identical distribution is to be reprocessed in a recovery operation. This yields a
recovery duration, @, of mean and variance given by (18]

E(Q) = E(NF) E(S)

= :’;—,-3(5) . (5.12)

var(Q) = E(NF) var(S) + var(NF) (B(S))*

a :’;_,.[;(s-) . a’; =(E(S)" . (5.13)

The expected residual time R(Q) foliows

R(Q) = R(S) + -’;—ﬁ-‘f)- : (5.14)

Substituting for 4° from equation (3.8) in equation (5.12), we can solve for £(Q)
and A°.

The optimization of performance measures with respect to the checikpoint-
ing rate, &, can be carried out analytically or cumerically after substituting for
£(Q) end R(Q) from equations (5.12) and (5.14). In general the maximization of
the system avellabiiity, 4°, and the minimisation of the mean response time of o
transastion, ¥, yieid different values for the optinwam cheolpointing rete [5,12).




6. Conclusions

We have defined the effective service time and related it to the completion
time associated with a cuctomer’s service in a single server with mised types of
Poisson intsrruptions. A derivation of the LST of the completion time is
presented. As an intuitive aiternative, we have demonstrated s probebilistic
argument to express the first moment and the expected residusl tims of the
completion time in terms of those of the effective vervice time and the interrup-
tions. Rigorous proofs are straightforward, though very lengthy and uninterest-
ing for presentation. The moments of the completion time ars used to obtain
the steady-state average number of customers in an M/G/1 system with mixed
types of interruptions. When all interruptions are active-preemptive, the aver-
age number of customers is given by the Pollaczek-Khintchine formula with the
customer’s service time replaced by the completion time.

The theory developed is relevant in many systems modeling applications.
One such application; namely, the modsling of checkpointing and recovery in a
transactional database system is considersd. The theory snsbles us to model the
interaction between transection-processing and the two types of interruptions
more realistically than in previous work.
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